A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering.

نویسندگان

  • Thomas Billiet
  • Mieke Vandenhaute
  • Jorg Schelfhout
  • Sandra Van Vlierberghe
  • Peter Dubruel
چکیده

The combined potential of hydrogels and rapid prototyping technologies has been an exciting route in developing tissue engineering scaffolds for the past decade. Hydrogels represent to be an interesting starting material for soft, and lately also for hard tissue regeneration. Their application enables the encapsulation of cells and therefore an increase of the seeding efficiency of the fabricated structures. Rapid prototyping techniques on the other hand, have become an elegant tool for the production of scaffolds with the purpose of cell seeding and/or cell encapsulation. By means of rapid prototyping, one can design a fully interconnected 3-dimensional structure with pre-determined dimensions and porosity. Despite this benefit, some of the rapid prototyping techniques are not or less suitable for the generation of hydrogel scaffolds. In this review, we therefore give an overview on the different rapid prototyping techniques suitable for the processing of hydrogel materials. A primary distinction will be made between (i) laser-based, (ii) nozzle-based, and (iii) printer-based systems. Special attention will be addressed to current trends and limitations regarding the respective techniques. Each of these techniques will be further discussed in terms of the different hydrogel materials used so far. One major drawback when working with hydrogels is the lack of mechanical strength. Therefore, maintaining and improving the mechanical integrity of the processed scaffolds has become a key issue regarding 3-dimensional hydrogel structures. This limitation can either be overcome during or after processing the scaffolds, depending on the applied technology and materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Tissue Engineering Using Rapid Prototyping

Rapid prototyping (RP) techniques are a group of advanced manufacturing processes that can produce custom made objects directly from computer data such as Computer Aided Design (CAD), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data. Using RP fabrication techniques, constructs with controllable and complex internal architecture with appropriate mechanical properties can be ach...

متن کامل

Fabrication of Tissue Engineering Scaffolds Using Rapid Prototyping Techniques

Rapid prototyping (RP) techniques are a group of advanced manufacturing processes that can produce custom made objects directly from computer data such as Computer Aided Design (CAD), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data. Using RP fabrication techniques, constructs with controllable and complex internal architecture with appropriate mechanical properties can be ach...

متن کامل

Fabrication of Tissue Engineering Scaffolds Using Rapid Prototyping Techniques

Rapid prototyping (RP) techniques are a group of advanced manufacturing processes that can produce custom made objects directly from computer data such as Computer Aided Design (CAD), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data. Using RP fabrication techniques, constructs with controllable and complex internal architecture with appropriate mechanical properties can be ach...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 33 26  شماره 

صفحات  -

تاریخ انتشار 2012